Files
ollama-model-training-5060ti/training_data/curated/text/c8bb09c5b0c327cea2908ad874efaeb3eda3f097fe1aa01d8123982ca7ac5260.txt

36 lines
2.8 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
Chapter 27: Arbitrage 439
Example 1: XYZ is sold short at 60, and a January 50 call is bought for 10¼ points.
Assume that the prevailing interest rate is 1 % per month and that the position is
established one month prior to expiration. XYZ pays no dividend. The total credit
brought in from the trades is $4,975, so the arbitrageur will earn $49.75 in interest
over the course of 1 month. If the stock is above 50 at expiration, he will exercise his
call to buy stock at 50 and close the position. His loss on the security trades will be
$25 the amount of time value premium paid for the call option. (He makes 10
points by selling stock at 60 and buying at 50, but loses 10¼ points on the exercised
call.) His overall profit is thus $24.75.
Example 2: A real-life example may point out the effect of interest rates even more
dramatically. In early 1979, IBM April 240 calls with about six weeks of life remain­
ing were over 60 points in-the-money. IBM was not going to be ex-dividend in that
time. Normally, such a deeply in-the-money option would be trading at parity or even
a discount when the time remaining to expiration is so short. However, these calls
were trading 3½ points over parity because of the prevailing high interest rates at the
time. IBM was at 300, the April 240 calls were trading at 63½, and the prevailing
interest rate was approximately 1 % per month. The credit from selling the stock and
buying the call was $23,700, so the arbitrageur earned $365.50 in interest for 1 ½
months, and lost $350 - the 3½ points of time value premium that he paid for the
call. This still left enough room for a profit.
In Chapter 1, it was stated that interest rates affect option prices. The above
examples of the "interest play" strategy quite clearly show why. As interest rates rise,
the arbitrageur can afford to pay more for the long call in this strategy, thus causing
the call price to increase in times of high interest rates. If call prices are higher, so
will put prices be, as the relationships necessary for conversion and reversal arbitrage
are preserved. Similarly, if interest rates decline, the arbitrageur will make lower
bids, and call and put prices will be lower. They are active enough to give truth to the
theory that option prices are directly related to interest rates.
THE BOX SPREAD
An arbitrage consists of simultaneously buying and selling the same security or equiv­
alent securities at different prices. For example, the reversal consists of selling a put
and simultaneously shorting stock and buying a call. The reader will recall that the
short stock/long call position was called a synthetic put. That is, shorting the stock
and buying a call is equivalent to buying a put. The reversal arbitrage therefore con­
sists of selling a (listed) put and simultaneously buying a (synthetic) put. In a similar