Files
ollama-model-training-5060ti/training_data/curated/text/01107f315fc580e07ea295f188e733f66cee602679430263d82534b04aa781d8.txt

170 lines
36 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
CHAPTER 5
An Introduction to Volatility-Selling Strategies
Along with death and taxes, there is one other fact of life we can all count on: the time value of all options ultimately going to zero. What an alluring concept! In a business where expected profits can be thwarted by an unexpected turn of events, this is one certainty traders can count on. Like all certainties in the financial world, there is a way to profit from this fact, but its not as easy as it sounds. Alas, the potential for profit only exists when there is risk of loss.
In order to profit from eroding option premiums, traders must implement option-selling strategies, also known as volatility-selling strategies. These strategies have their own set of inherent risks. Selling volatility means having negative vega—the risk of implied volatility rising. It also means having negative gamma—the risk of the underlying being too volatile. This is the nature of selling volatility. The option-selling trader does not want the underlying stock to move—that is, the trader wants the stock to be less volatile. That is the risk.
Profit Potential
Profit for the volatility seller is realized in a roundabout sort of way. The reward for low volatility is achieved through time decay. These strategies have positive theta. Just as the volatility-buying strategies covered in Chapter 4 had time working against them, volatility-selling strategies have time working in their favor. The trader is effectively paid to assume the risk of movement.
Gamma-Theta Relationship
There exists a trade-off between gamma and theta. Long options have positive gamma and negative theta. Short options have negative gamma and positive theta. Positions with greater gamma, whether positive or negative, tend to have greater theta values, negative or positive. Likewise, lower absolute values for gamma tend to go hand in hand with lower absolute values for theta. The gamma-theta relationship is the most important consideration with many types of strategies. Gamma-theta is often the measurement with the greatest influence on the bottom line.
Greeks and Income Generation
With volatility-selling strategies (sometimes called income-generating strategies), greeks are often overlooked. Traders simply dismiss greeks as unimportant to this kind of trade. There is some logic behind this reasoning. Time decay provides the profit opportunity. In order to let all of time premium erode, the position must be held until expiration. Interim changes in implied volatility are irrelevant if the position is held to term. The gamma-theta loses some significance if the position is held until expiration, too. The position has either passed the break-even point on the at-expiration diagram, or it has not. Incremental daily time decayrelated gains are not the ultimate goal. The trader is looking for all the time premium, not portions of it.
So why do greeks matter to volatility sellers? Greeks allow traders to be flexible. Consider short-term-momentum stock traders. The traders buy a stock because they believe it will rise over the next month. After one week, if unexpected bearish news is announced causing the stock to break through its support lines, the traders have a decision to make. Short-term speculative traders very often choose to cut their losses and exit the position early rather than risk a larger loss hoping for a recovery.
Volatility-selling option traders are often faced with the same dilemma. If the underlying stays in line with the traders forecast, there is little to worry about. But if the environment changes, the traders have to react. Knowing the greeks for a position can help traders make better decisions if they plan to close the position before expiration.
Naked Call
A naked call is when a trader shorts a call without having stock or other options to cover or protect it. Since the call is uncovered, it is one of the riskier trades a trader can make. Recall the at-expiration diagram for the naked call from Chapter 1,
Exhibit 1.3
: Naked TGT Call. Theoretically, there is limited reward and unlimited risk. Yet there are times when experienced traders will justify making such a trade. When a stock has been trading in a range and is expected to continue doing so, traders may wait until it is near the top of the channel, where there is resistance, and then short a call.
For example, a trader, Brendan, has been studying a chart of Johnson & Johnson (JNJ). Brendan notices that for a few months the stock has trading been in a channel between $60 and $65. As he observes Johnson & Johnson beginning to approach the resistance level of $65 again, he considers selling a call to speculate on the stock not rising above $65. Before selling the call, Brendan consults other technical analysis tools, like ADX/DMI, to confirm that there is no trend present. ADX/DMI is used by some traders as a filter to determine the strength of a trend and whether the stock is overbought or oversold. In this case, the indicator shows no strong trend present. Brendan then performs due diligence. He studies the news. He looks for anything specific that could cause the stock to rally. Is the stock a takeover target? Brendan finds nothing. He then does earnings research to find out when they will be announced, which is not for almost two more months.
Next, Brendan pulls up an option chain on his computer. He finds that with the stock trading around $64 per share, the market for the November 65 call (expiring in four weeks) is 0.66 bid at 0.68 offer. Brendan considers when Johnson & Johnsons earnings report falls. Although recent earnings have seldom been a major concern for Johnson & Johnson, he certainly wants to sell an option expiring before the next earnings report. The November fits the mold. Brendan sells ten of the November 65 calls at the bid price of 0.66.
Brendan has a rather straightforward goal. He hopes to see Johnson & Johnson shares remain below $65 between now and expiration. If he is right, he stands to make $660. If he is wrong?
Exhibit 5.1
shows how Brendans calls hold up if they are held until expiration.
EXHIBIT 5.1
Naked Johnson & Johnson call at expiration.
Considering the risk/reward of this trade, Brendan is rightfully concerned about a big upward move. If the stock begins to rally, he must be prepared to act fast. Brendan must have an idea in advance of what his pain threshold is. In other words, at what price will he buy back his calls and take a loss if Johnson & Johnson moves adversely?
He decides he will buy all 10 of his calls back at 1.10 per contract if the trade goes against him. (1.10 is an arbitrary price used for illustrative purposes. The actual price will vary, based on the situation and the risk tolerance of the trader. More on when to take profits and losses is discussed in future chapters.) He may choose to enter a good-till-canceled (GTC) stop-loss order to buy back his calls. Or he may choose to monitor the stock and enter the order when he sees the calls offered at 1.10—a mental stop order. What Brendan needs to know is: How far can the stock price advance before the calls are at 1.10?
Brendan needs to examine the greeks of this trade to help answer this question.
Exhibit 5.2
shows the hypothetical greeks for the position in this example.
EXHIBIT 5.2
Greeks for short Johnson & Johnson 65 call (per contract).
Delta
0.34
Gamma
0.15
Theta
0.02
Vega
0.07
The short call has a negative delta. It also has negative gamma and vega, but it has positive time decay (theta). As Johnson & Johnson ticks higher, the delta increases the nominal value of the call. Although this is not a directional trade per se, delta is a crucial element. It will have a big impact on Brendans expectations as to how high the stock can rise before he must take his loss.
First, Brendan considers how much the option price can move before he covers. The market now is 0.66 bid at 0.68 offer. To buy back his calls at 1.10, they must be offered at 1.10. The difference between the offer now and the offer price at which Brendan will cover is 0.42 (thats 1.10 0.68). Brendan can use delta to convert the change in the ask prices into a stock price change. To do so, Brendan divides the change in the option price by the delta.
The 0.34 delta indicates that if JNJ rises $1.24, the calls should be offered at 1.10.
Brendan takes note that the bid-ask spreads are typically 0.01 to 0.03 wide in near-term Johnson & Johnson options trading under 1.00. This is not necessarily the case in other option classes. Less liquid names have wider spreads. If the spreads were wider, Brendan would have more slippage. Slippage is the difference between the assumed trade price and the actual price of the fill as a product of the bid-ask spread. Its the difference between theory and reality. If the bid-ask spread had a typical width of, say, 0.70, the market would be something more like 0.40 bid at 1.10 offer. In this case, if the stock moved even a few cents higher, Brendan could not buy his calls back at his targeted exit price of 1.10. The tighter markets provide lower transaction costs in the form of lower slippage. Therefore, there is more leeway if the stock moves adversely when there are tighter bid-ask option spreads.
But just looking at delta only tells a part of the story. In reality, the delta does not remain constant during the price rise in Johnson & Johnson but instead becomes more negative. Initially, the delta is 0.34 and the gamma is 0.15. After a rise in the stock price, the delta will be more negative by the amount of the gamma. To account for the entire effect of direction, Brendan needs to take both delta and gamma into account. He needs to estimate the average delta based on gamma during the stock price move. The formula for the change in stock price is
Taking into account the effect of gamma as well as delta, Johnson & Johnson needs to rise only $1.01, in order for Brendans calls to be offered at his stop-loss price of 1.10.
While having a predefined price point to cover in the event the underlying rises is important, sometimes traders need to think on their feet. If material news is announced that changes the fundamental outlook for the stock, Brendan will have to adjust his plan. If the news leads Brendan to become bullish on the stock, he should exit the trade at once, taking a small loss now instead of the bigger loss he would expect later. If the trader is uncertain as to whether to hold or close the position, the Would I Do It Now? rule is a useful rule of thumb.
Would I Do It Now? Rule
To follow this rule, ask yourself, “If I did not already have this position, would I do it now? Would I establish the position at the current market prices, given the current market scenario?” If the answer is no, then the solution is simple: Exit the trade.
For example, if after one week material news is released and Johnson & Johnson is trading higher, at $64.50 per share, and the November 65 call is trading at 0.75, Brendan must ask himself, based on the price of the stock and all known information, “If I were not already short the calls, would I short them now at the current price of 0.75, with the stock trading at $64.50?”
Brendans opinion of the stock is paramount in this decision. If, for example, based on the news that was announced he is now bullish, he would likely not want to sell the calls at 0.75—he only gets $0.09 more in option premium and the stock is 0.50 closer to the strike. If, however, he is not bullish, there is more to consider.
Theta can be of great use in decision making in this situation. As the number of days until expiration decreases and the stock approaches $65 (making the option more at-the-money), Brendans theta grows more positive.
Exhibit 5.3
shows the theta of this trade as the underlying rises over time.
EXHIBIT 5.3
Theta of Johnson & Johnson.
When the position is first established, positive theta comforts Brendan by showing that with each passing day he gets a little closer to his goal—to have the 65 calls expire out-of-the-money (OTM) and reap a profit of the entire 66-cent premium. Theta becomes truly useful if the position begins to move against him. As Johnson & Johnson rises, the trade gets more precarious. His negative delta increases. His negative gamma increases. His goal becomes more out of reach. In conjunction with delta and gamma, theta helps Brendan decide whether the risk is worth the reward.
In the new scenario, with the stock at $64.50, Brendan would collect $18 a day (1.80 × 10 contracts). Is the risk of loss in the short run worth earning $18 a day? With Johnson & Johnson at $64.50, would Brendan now short 10 calls at 0.75 to collect $18 a day, knowing that each day may bring a continued move higher in the stock? The answer to this question depends on Brendans assessment of the risk of the underlying continuing its ascent. As time passes, if the stock remains closer to the strike, the daily theta rises, providing more reward. Brendan must consider that as theta—the reward—rises, so does gamma: a risk factor.
A small but noteworthy risk is that implied volatility could rise. The negative vega of this position would, then, adversely affect the profitability of this trade. It will make Brendans 1.10 cover-point approach faster because it makes the option more expensive. Vega is likely to be of less consequence because it would ultimately take the stocks rising though the strike price for the trade to be a loser at expiration.
Short Naked Puts
Another trader, Stacie, has also been studying Johnson & Johnson. Stacie believes Johnson & Johnson is on its way to test the $65 resistance level yet again. She believes it may even break through $65 this time, based on strong fundamentals. Stacie decides to sell naked puts. A naked put is a short put that is not sold in conjunction with stock or another option.
With the stock around $64, the market for the November 65 put is 1.75 bid at 1.80. Stacie likes the fact that the 65 puts are slightly in-the-money (ITM) and thus have a higher delta. If her price rise comes sooner than expected, the high delta may allow her to take a profit early. Stacie sells 10 puts at 1.75.
In the best-case scenario, Stacie retains the entire 1.75. For that to happen, she will need to hold this position until expiration and the stock will have to rise to be trading above the 65 strike. Logically, Stacie will want to do an at-expiration analysis.
Exhibit 5.4
shows Stacies naked put trade if she holds it until expiration.
EXHIBIT 5.4
Naked Johnson & Johnson put at expiration.
While harvesting the entire premium as a profit sounds attractive, if Stacie can take the bulk of her profit early, shell be happy to close the position and eliminate her risk—nobody ever went broke taking a profit. Furthermore, she realizes that her outlook may be wrong: Johnson & Johnson may decline. She may have to close the position early—maybe for a profit, maybe for a loss. Stacie also needs to study her greeks.
Exhibit 5.5
shows the greeks for this trade.
EXHIBIT 5.5
Greeks for short Johnson & Johnson 65 put (per contract).
Delta
0.65
Gamma
0.15
Theta
0.02
Vega
0.07
The first item to note is the delta. This position has a directional bias. This bias can work for or against her. With a positive 0.65 delta per contract, this position has a directional sensitivity equivalent to being long around 650 shares of the stock. Thats the delta × 100 shares × 10 contracts.
Stacies trade is not just a bullish version of Brendans. Partly because of the size of the delta, its different—specific directional bias aside. First, she will handle her trade differently if it is profitable.
For example, if over the next week or so Johnson & Johnson rises $1, positive delta and negative gamma will have a net favorable effect on Stacies profitability. Theta is small in comparison and wont have too much of an effect. Delta/gamma will account for a decrease in the puts theoretical value of about $0.73. Thats the estimated average delta times the stock move, or [0.65 + (0.15/2)] × 1.00.
Stacies actual profit would likely be less than 0.73 because of the bid-ask spread. Stacie must account for the fact that the bid-ask is 0.05 wide (1.751.80). Because Stacie would buy to close this position, she should consider the 0.73 price change relative to the 1.80 offer, not the 1.75 trade price—that is, she factors in a nickel of slippage. Thus, she calculates, that the puts will be offered at 1.07 (thats 1.80 0.73) when the stock is at $65. That is a gain of $0.68.
In this scenario, Stacie should consider the Would I Do It Now? rule to guide her decision as to whether to take her profit early or hold the position until expiration. Is she happy being short ten 65 puts at 1.07 with Johnson & Johnson at $65? The premium is lower now. The anticipated move has already occurred, and she still has 28 days left in the option that could allow for the move to reverse itself. If she didnt have the trade on now, would she sell ten 65 puts at 1.07 with Johnson & Johnson at $65? Based on her original intention, unless she believes strongly now that a breakout through $65 with follow-through momentum is about to take place, she will likely take the money and run.
Stacie also must handle this trade differently from Brendan in the event that the trade is a loser. Her trade has a higher delta. An adverse move in the underlying would affect Stacies trade more than it would Brendans. If Johnson & Johnson declines, she must be conscious in advance of where she will cover.
Stacie considers both how much she is willing to lose and what potential stock-price action will cause her to change her forecast. She consults a stock chart of Johnson & Johnson. In this example, well assume there is some resistance developing around $64 in the short term. If this resistance level holds, the trade becomes less attractive. The at-expiration breakeven is $63.25, so the trade can still be a winner if Johnson & Johnson retreats. But Stacie is looking for the stock to approach $65. She will no longer like the risk/reward of this trade if it looks like that price rise wont occur. She makes the decision that if Johnson & Johnson bounces off the $64 level over the next couple weeks, she will exit the position for fear that her outlook is wrong. If Johnson & Johnson drifts above $64, however, she will ride the trade out.
In this example, Stacie is willing to lose 1.00 per contract. Without taking into account theta or vega, that 1.00 loss in the option should occur at a stock price of about $63.28. Theta is somewhat relevant here. It helps Stacies potential for profit as time passes. As time passes and as the stock rises, so will theta, helping her even more. If the stock moves lower (against her) theta helps ease the pain somewhat, but the further in-the-money the put, the lower the theta.
Vega can be important here for two reasons: first, because of how implied volatility tends to change with market direction, and second, because it can be read as an indication of the markets expectations.
The Double Whammy
With the stock around $64, there is a negative vega of about seven cents. As the stock moves lower, away from the strike, the vega gets a bit smaller. However, the market conditions that would lead to a decline in the price of Johnson & Johnson would likely cause implied volatility (IV) to rise. If the stock drops, Stacie would have two things working against her—delta and vega—a double whammy. Stacie needs to watch her vega.
Exhibit 5.6
shows the vega of Stacies put as it changes with time and direction.
EXHIBIT 5.6
Johnson & Johnson 65 put vega.
If after one week passes Johnson & Johnson gaps lower to, say, $63.00 a share, the vega will be 0.043 per contract. If IV subsequently rises 5 points as a result of the stock falling, vega will make Stacies puts theoretically worth 21.5 cents more per contract. She will lose $215 on vega (thats 0.043 vega × 5 volatility points × 10 contracts) plus the adverse delta/gamma move.
A gap opening will cause her to miss the opportunity to stop herself out at her target price entirely. Even if the stock drifts lower, her targeted stop-loss price will likely come sooner than expected, as the option price will likely increase both by delta/gamma and vega resulting from rising volatility. This can cause her to have to cover sooner, which leaves less room for error. With this trade, increases in IV due to market direction can make it feel as if the delta is greater than it actually is as the market declines. Conversely, IV softening makes it feel as if the delta is smaller than it is as the market rises.
The second reason IV has importance for this trade (as for most other strategies) is that it can give some indication of how much the market thinks the stock can move. If IV is higher than normal, the market perceives there to be more risk than usual of future volatility. The question remains: Is the higher premium worth the risk?
The answer to this question is subjective. Part of the answer is based on Stacies assessment of future volatility. Is the market right? The other part is based on Stacies risk tolerance. Is she willing to endure the greater price swings associated with the potentially higher volatility? This can mean getting whipsawed, which is exiting a position after reaching a stop-loss point only to see the market reverse itself. The would-be profitable trade is closed for a loss. Higher volatility can also mean a higher likelihood of getting assigned and acquiring an unwanted long stock position.
Cash-Secured Puts
There are some situations where higher implied volatility may be a beneficial trade-off. What if Stacies motivation for shorting puts was different? What if she would like to own the stock, just not at the current market price? Stacie can sell ten 65 puts at 1.75 and deposit $63,250 in her trading account to secure the purchase of 1,000 shares of Johnson & Johnson if she gets assigned. The $63,250 is the $65 per share she will pay for the stock if she gets assigned, minus the 1.75 premium she received for the put × $100 × 10 contracts. Because the cash required to potentially purchase the stock is secured by cash sitting ready in the account, this is called a cash-secured put.
Her effective purchase price if assigned is $63.25—the same as her breakeven at expiration. The idea with this trade is that if Johnson & Johnson is anywhere under $65 per share at expiration, she will buy the stock effectively at $63.25. If assigned, the time premium of the put allows her to buy the stock at a discount compared with where it is priced when the trade is established, $64. The higher the time premium—or the higher the implied volatility—the bigger the discount.
This discount, however, is contingent on the stock not moving too much. If it is above $65 at expiration she wont get assigned and therefore can only profit a maximum of 1.75 per contract. If the stock is below $63.25 at expiration, the time premium no longer represents a discount, in fact, the trade becomes a loser. In a way, Stacie is still selling volatility.
Covered Call
The problem with selling a naked call is that it has unlimited exposure to upside risk. Because of this, many traders simply avoid trading naked calls. A more common, and some would argue safer, method of selling calls is to sell them covered.
A covered call is when calls are sold and stock is purchased on a share-for-share basis to cover the unlimited upside risk of the call. For each call that is sold, 100 shares of the underlying security are bought. Because of the addition of stock to this strategy, covered calls are traded with a different motivation than naked calls.
There are clearly many similarities between these two strategies. The main goal for both is to harvest the premium of the call. The theta for the call is the same with or without the stock component. The gamma and vega for the two strategies are the same as well. The only difference is the stock. When stock is added to an option position, the net delta of the position is the only thing affected. Stock has a delta of one, and all its other greeks are zero.
The pivotal point for both positions is the strike price. Thats the point the trader wants the stock to be above or below at expiration. With the naked call, the maximum payout is reaped if the stock is below the strike at expiration, and there is unlimited risk above the strike. With the covered call, the maximum payout is reaped if the stock is above the strike at expiration. If the stock is below the strike at expiration, the risk is substantial—the stock can potentially go to zero.
Putting It on
There are a few important considerations with the covered call, both when putting on, or entering, the position and when taking off, or exiting, the trade. The risk/reward implications of implied volatility are important in the trade-planning process. Do I want to get paid more to assume more potential risk? More speculative traders like the higher premiums. More conservative (investment-oriented) covered-call sellers like the low implied risk of low-IV calls. Ultimately, a main focus of a covered call is the option premium. How fast can it go to zero without the movement hurting me? To determine this, the trader must study both theta and delta.
The first step in the process is determining which month and strike call to sell. In this example, Harley-Davidson Motor Company (HOG) is trading at about $69 per share. A trader, Bill, is neutral to slightly bullish on Harley-Davidson over the next three months.
Exhibit 5.7
shows a selection of available call options for Harley-Davidson with corresponding deltas and thetas.
EXHIBIT 5.7
Harley-Davidson calls.
In this example, the May 70 calls have 85 days until expiration and are 2.80 bid. If Harley-Davidson remained at $69 until May expiration, the 2.80 premium would represent a 4 percent profit over this 85-day period (2.80 ÷ 69). Thats an annualized return of about 17 percent ([0.04 / 85)] × 365).
Bill considers his alternatives. He can sell the April (57-day) 70 calls at 2.20 or the March (22-day) 70 calls at 0.85. Since there is a different number of days until expiration, Bill needs to compare the trades on an apples-to-apples basis. For this, he will look at theta and implied volatility.
Presumably, the March call has a theta advantage over the longer-term choices. The March 70 has a theta of 0.032, while the April 70s theta is 0.026 and the May 70s is 0.022. Based on his assessment of theta, Bill would have the inclination to sell the March. If he wants exposure for 90 days, when the March 70 call expires, he can roll into the April 70 call and then the May 70 call (more on this in subsequent chapters). This way Bill can continue to capitalize on the nonlinear rate of decay through May.
Next, Bill studies the IV term structure for the Harley-Davidson ATMs and finds the March has about a 19.2 percent IV, the April has a 23.3 percent IV, and the May has a 23 percent IV. March is the cheapest option by IV standards. This is not necessarily a favorable quality for a short candidate. Bill must weigh his assessment of all relevant information and then decide which trade is best. With this type of a strategy, the benefits of the higher theta can outweigh the disadvantages of selling the lower IV. In this case, Bill may actually like selling the lower IV. He may infer that the market believes Harley-Davidson will be less volatile during this period.
So far, Bill has been focusing his efforts on the 70 strike calls. If he trades the March 70 covered call, he will have a net delta of 0.588 per contract. Thats the negative 0.412 delta from shorting the call plus the 1.00 delta of the stock. His indifference point if the trade is held until expiration is $70.85. The indifference point is the point at which Bill would be indifferent as to whether he held only the stock or the covered call. This is figured by adding the strike price of $70 to the 0.85 premium. This is the effective sale price of the stock if the call is assigned. If Bill wants more potential for upside profit, he could sell a higher strike. He would have to sell the April or May 75, since the March 75s are a zero bid. This would give him a higher indifference point, and the upside profits would materialize quickly if HOG moved higher, since the covered-call deltas would be higher with the 75 calls. The April 75 covered-call net delta is 0.796 per contract (the stock delta of 1.00 minus the 0.204 delta of the call). The May 75 covered-call delta is 0.751.
But Bill is neutral to only slightly bullish. In this case, hed rather have the higher premium—high theta is more desirable than high delta in this situation. Bill buys 1,000 shares of Harley-Davidson at $69 and sells 10 Harley-Davidson March 70 calls at 0.85.
Bill also needs to plan his exit. To exit, he must study two things: an at-expiration diagram and his greeks.
Exhibit 5.8
shows the P&(L) at expiration of the Harley-Davidson March 70 covered call.
Exhibit 5.9
shows the greeks.
EXHIBIT 5.8
Harley-Davidson covered call.
EXHIBIT 5.9
Greeks for Harley-Davidson covered call (per contract).
Delta
0.591
Gamma
0.121
Theta
0.032
Vega
0.066
Taking It Off
If the trade works out perfectly for Bill, 22 days from now Harley-Davidson will be trading right at $70. Hed profit on both delta and theta. If the trade isnt exactly perfect, but still good, Harley-Davidson will be anywhere above $68.15 in 22 days. Its the prospect that the trade may not be so good at March expiration that occupies Bills thoughts, but a trader has to hope for the best and plan for the worst.
If it starts to trend, Bill needs to react. The consequences to the stocks trending to the upside are not quite so dire, although he might be somewhat frustrated with any lost opportunity above the indifference point. Its the downside risk that Bill will more vehemently guard against.
First, the same IV/vega considerations exist as they did in the previous examples. In the event the trade is closed early, IV/vega may help or hinder profitability. A rise in implied volatility will likely accompany a decline in the stock price. This can bring Bill to his stop-loss sooner. Delta versus theta however, is the major consideration. He will plan his exit price in advance and cover when the planned exit price is reached.
There are more moving parts with the covered call than a naked option. If Bill wants to close the position early, he can leg out, meaning close only one leg of the trade (the call or the stock) at a time. If he legs out of the trade, hes likely to close the call first. The motivation for exiting a trade early is to reduce risk. A naked call is hardly less risky than a covered call.
Another tactic Bill can use, and in this case will plan to use, is rolling the call. When the March 70s expire, if Harley-Davidson is still in the same range and his outlook is still the same, he will sell April calls to continue the position. After the April options expire, hell plan to sell the Mays.
With this in mind, Bill may consider rolling into the Aprils before March expiration. If it is close to expiration and Harley-Davidson is trading lower, theta and delta will both have devalued the calls. At the point when options are close to expiration and far enough OTM to be offered close to zero, say 0.05, the greeks and the pricing model become irrelevant. Bill must consider in absolute terms if it is worth waiting until expiration to make 0.05. If there is a lot of time until expiration, the answer is likely to be no. This is when Bill will be apt to roll into the Aprils. Hell buy the March 70s for a nickel, a dime, or maybe 0.15 and at the same time sell the Aprils at the bid. This assumes he wants to continue to carry the position. If the roll is entered as a single order, it is called a calendar spread or a time spread.
Covered Put
The last position in the family of basic volatility-selling strategies is the covered put, sometimes referred to as selling puts and stock. In a covered put, a trader sells both puts and stock on a one-to-one basis. The term
covered put
is a bit of a misnomer, as the strategy changes from limited risk to unlimited risk when short stock is added to the short put. A naked put can produce only losses until the stock goes to zero—still a substantial loss. Adding short stock means that above the strike gains on the put are limited, while losses on the stock are unlimited. The covered put functions very much like a naked call. In fact, they are synthetically equal. This concept will be addressed further in the next chapter.
Lets looks at another trader, Libby. Libby is an active trader who trades several positions at once. Libby believes the overall market is in a range and will continue as such over the next few weeks. She currently holds a short stock position of 1,000 shares in Harley-Davidson. She is becoming more neutral on the stock and would consider buying in her short if the market dipped. She may consider entering into a covered-put position. There is one caveat: Libby is leaving for a cruise in two weeks and does not want to carry any positions while she is away. She decides she will sell the covered put and actively manage the trade until her vacation. Libby will sell 10 Harley-Davidson March (22-day) 70 puts at 1.85 against her short 1,000 shares of Harley-Davidson, which is trading at $69 per share.
She knows that her maximum profit if the stock declines and assignment occurs will be $850. Thats 0.85 × $100 × 10 contracts. Win or lose, she will close the position in two weeks when there are only eight days until expiration. To trade this covered put she needs to watch her greeks.
Exhibit 5.10
shows the greeks for the Harley-Davidson 70-strike covered put.
EXHIBIT 5.10
Greeks for Harley-Davidson covered put (per contract).
Delta
0.419
Gamma
0.106
Theta
0.031
Vega
0.066
Libby is really focusing on theta. It is currently about $0.03 per day but will increase if the put stays close-to-the-money. In two weeks, the time premium will have decayed significantly. A move downward will help, too, as the 0.419 delta indicates.
Exhibit 5.11
displays an array of theoretical values of the put at eight days until expiration as the stock price changes.
EXHIBIT 5.11
HOG 70 put values at 8 days to expiry.
As long as Harley-Davidson stays below the strike price, Libby can look at her put from a premium-over-parity standpoint. Below the strike, the intrinsic value of the put doesnt matter too much, because losses on intrinsic value are offset by gains on the stock. For Libby, all that really matters is the time value. She sold the puts at 0.85 over parity. If Harley-Davidson is trading at $68 with eight days to go, she can buy her puts back for 0.12 over parity. Thats a 73-cent profit, or $730 on her 10 contracts. This doesnt account for any changes in the time value that may occur as a result of vega, but vega will be small with Harley-Davidson at $68 and eight days to go. At this point, she would likely close down the whole position—buying the puts and buying the stock—to take a profit on a position that worked out just about exactly as planned.
Her risk, though, is to the upside. A big rally in the stock can cause big losses. From a theoretical standpoint, losses are potentially unlimited with this type of trade. If the stock is above the strike, she needs to have a mental stop order in mind and execute the closing order with discipline.
Curious Similarities
These basic volatility-selling strategies are fairly simple in nature. If the trader believes a stock will not rise above a certain price, the most straightforward way to trade the forecast is to sell a call. Likewise, if the trader believes the stock will not go below a certain price he can sell a put. The covered call and covered put are also ways to generate income on long or short stock positions that have these same price thresholds. In fact, the covered call and covered put have some curious similarities to the naked put and naked call. The similarities between the two pairs of positions are no coincidence. The following chapter sheds light on these similarities.