condor’s expiring profitable, but there are a few adjustments that need to be made. First, because with an iron condor the idea is to profit from net short option premium, it usually makes more sense to sell shorter-term options to profit from higher rates of time decay. This entails trading condors composed of one- or two-month options. The IV needs to be deannualized and converted to represent the standard deviation of the underlying at expiration. The first step is to compute the one-day standard deviation. This is found by dividing the implied volatility by the square root of the number of trading days in a year, then multiplying by the square root of the number of trading days until expiration. The result is the standard deviation (σ) at the time of expiration stated as a percent. Next, multiply that percentage by the price of the underlying to get the standard deviation in absolute terms. The formula 2 for calculating the shorter-term standard deviation is as follows: This value will be added to or subtracted from the price of the underlying to get the price points at which the approximate standard deviations fall. Consider an example using options on the Standard & Poor’s 500 Index (SPX). With 50 days until expiration, the SPX is at 1241 and the implied volatility is 23.2 percent. To find strike prices that are one standard deviation away from the current index price, we need to enter the values into the equation. We first need to know how many actual trading days are in the 50-day period. There are 35 business days during this particular 50- day period (there is one holiday and seven weekend days). We now have all the data we need to calculate which strikes to sell. The lower standard deviation is 1134.55 (1241 − 106.45) and the upper is 1347.45 (1241 + 106.45). This means there would be about a 68 percent chance of SPX ending up between 1134.55 and 1347.45 at expiration. In this example, to have about a two-thirds chance of success, one would sell the 1135 puts and the 1350 calls as part of the iron condor.