This would be a great trade if it weren’t for the prices one would have to accept to put it on. First, the 120 puts are offered at 0.25 and the 123 puts are 0.25 bid. This means that the put spread would be sold at zero! The maximum risk is 3.00, and the maximum gain is zero. Not a really good risk/reward. The 142–145 call spread isn’t much better: it can be sold for a dime. At the time, again a low-volatility period, many traders probably felt it was unlikely that the DJX will rise 5 percent in a 51-day period. Some traders may have considered trading a similarly priced iron condor (though of course they’d have to require some small credit for the risk). A little over a year later the DJX was trading around 50 percent lower. Traders must always be vigilant of the possibility of volatility, even unexpected volatility and structure their risk/reward accordingly. Most traders would say the risk/reward of this trade isn’t worth it. Strikes too far apart have a greater chance of success, but the payoff just isn’t there. Strikes with High Probabilities of Success So how does a trader find the happy medium of strikes close enough together to provide rich premiums but far enough apart to have a good chance of success? Certainly, there is something to be said for looking at the prices at which a trade can be done and having a subjective feel for whether the underlying is likely to move outside the range of the break- even prices. A little math, however, can help quantify this likelihood and aid in the decision-making process. Recall that IV is read by many traders to be the market’s consensus estimate of future realized volatility in terms of annualized standard deviation. While that is a mouthful to say—or in this case, rather, an eyeful to read—when broken down it is not quite as intimidating as it sounds. Consider a simplified example in which an underlying security is trading at $100 a share and the implied volatility of the at-the-money (ATM) options is 10 percent. That means, from a statistical perspective, that if the expected return for the stock is unchanged, the one-year standard deviations are at $90 and $110. 1 In this case, there is about a 68 percent chance of the stock trading between $90 and $110 one year from now. IV then is useful information to a trader who wants to quantify the chances of an iron