Gamma The strike price is the only constant in the pricing model. When the stock price moves relative to this constant, the option in question becomes more in-the-money or out-of-the-money. This means the delta changes. This isolated change is measured by the option’s gamma, sometimes called curvature . Gamma (Γ) is the rate of change of an option’s delta given a change in the price of the underlying security . Gamma is conventionally stated in terms of deltas per dollar move. The simplified examples above under Definition 1 of delta, used to describe the effect of delta, had one important piece of the puzzle missing: gamma. As the stock price moved higher in those examples, the delta would not remain constant. It would change due to the effect of gamma. The following example shows how the delta would change given a 0.04 gamma attributed to the call option. The call in this example starts as a 0.50-delta option. When the stock price increases by $1, the delta increases by the amount of the gamma. In this example, delta increases from 0.50 to 0.54, adding 0.04 deltas. As the stock price continues to rise, the delta continues to move higher. At $62, the call’s delta is 0.58. This increase in delta will affect the value of the call. When the stock price first begins to rise from $60, the option value is increasing at a rate of 50 percent—the call’s delta at that stock price. But by the time the stock is at $61, the option value is increasing at a rate of 54 percent of the stock price. To estimate the theoretical value of the call at $61, we must first estimate the average change in the delta between $60 and $61. The average delta between $60 and $61 is roughly 0.52. It’s difficult to calculate the average delta exactly because gamma is not constant; this is discussed in more detail later in the chapter. A more realistic example of call values in relation to the stock price would be as follows: