Delta The five figures commonly used by option traders are represented by Greek letters: delta, gamma, theta, vega, rho. The figures are referred to as option greeks. Vega, of course, is not an actual letter of the greek alphabet, but in the options vernacular, it is considered one of the greeks. The greeks are a derivation of an option-pricing model, and each Greek letter represents a specific sensitivity to influences on the option’s value. To understand concepts represented by these five figures, we’ll start with delta, which is defined in four ways: 1. The rate of change of an option value relative to a change in the underlying stock price. 2. The derivative of the graph of an option value in relation to the stock price. 3. The equivalent of underlying shares represented by an option position. 4. The estimate of the likelihood of an option expiring in-the-money. 1 Definition 1 : Delta (Δ) is the rate of change of an option’s value relative to a change in the price of the underlying security. A trader who is bullish on a particular stock may choose to buy a call instead of buying the underlying security. If the price of the stock rises by $1, the trader would expect to profit on the call—but by how much? To answer that question, the trader must consider the delta of the option. Delta is stated as a percentage. If an option has a 50 delta, its price will change by 50 percent of the change of the underlying stock price. Delta is generally written as either a whole number, without the percent sign, or as a decimal. So if an option has a 50 percent delta, this will be indicated as 0.50, or 50. For the most part, we’ll use the former convention in our discussion. Call values increase when the underlying stock price increases and vice versa. Because calls have this positive correlation with the underlying, they have positive deltas. Here is a simplified example of the effect of delta on an option: