Furthermore, she realizes that her outlook may be wrong: Johnson & Johnson may decline. She may have to close the position early—maybe for a profit, maybe for a loss. Stacie also needs to study her greeks. Exhibit 5.5 shows the greeks for this trade. EXHIBIT 5.5 Greeks for short Johnson & Johnson 65 put (per contract). Delta 0.65 Gamma−0.15 Theta 0.02 Vega −0.07 The first item to note is the delta. This position has a directional bias. This bias can work for or against her. With a positive 0.65 delta per contract, this position has a directional sensitivity equivalent to being long around 650 shares of the stock. That’s the delta × 100 shares × 10 contracts. Stacie’s trade is not just a bullish version of Brendan’s. Partly because of the size of the delta, it’s different—specific directional bias aside. First, she will handle her trade differently if it is profitable. For example, if over the next week or so Johnson & Johnson rises $1, positive delta and negative gamma will have a net favorable effect on Stacie’s profitability. Theta is small in comparison and won’t have too much of an effect. Delta/gamma will account for a decrease in the put’s theoretical value of about $0.73. That’s the estimated average delta times the stock move, or [0.65 + (–0.15/2)] × 1.00. Stacie’s actual profit would likely be less than 0.73 because of the bid-ask spread. Stacie must account for the fact that the bid-ask is 0.05 wide (1.75– 1.80). Because Stacie would buy to close this position, she should consider the 0.73 price change relative to the 1.80 offer, not the 1.75 trade price— that is, she factors in a nickel of slippage. Thus, she calculates, that the puts will be offered at 1.07 (that’s 1.80 − 0.73) when the stock is at $65. That is a gain of $0.68. In this scenario, Stacie should consider the Would I Do It Now? rule to guide her decision as to whether to take her profit early or hold the position until expiration. Is she happy being short ten 65 puts at 1.07 with Johnson & Johnson at $65? The premium is lower now. The anticipated move has already occurred, and she still has 28 days left in the option that could allow